The Indelible Bonobo Experience

Renaissance Monkey: in-depth expertise in Jack-of-all-trading. I mostly comment on news of interest to me and occasionally engage in debates or troll passive-aggressively. Ask or Submit 2 mah authoritah! ;) !

When we are tired, we are attacked by ideas we conquered long ago.
— Friedrich Nietzsche
Horgan: What’s your opinion of the recent philosophy-bashing by Stephen Hawking, Lawrence Krauss and Neil deGrasse Tyson? Rovelli: Seriously: I think they are stupid in this. I have admiration for them in other things, but here they have gone really wrong. Look: Einstein, Heisenberg, Newton, Bohr…. and many many others of the greatest scientists of all times, much greater than the names you mention, of course, read philosophy, learned from philosophy, and could have never done the great science they did without the input they got from philosophy, as they claimed repeatedly. You see: the scientists that talk philosophy down are simply superficial: they have a philosophy (usually some ill-digested mixture of Popper and Kuhn) and think that this is the “true” philosophy, and do not realize that this has limitations. Here is an example: theoretical physics has not done great in the last decades. Why? Well, one of the reasons, I think, is that it got trapped in a wrong philosophy: the idea that you can make progress by guessing new theory and disregarding the qualitative content of previous theories. This is the physics of the “why not?” Why not studying this theory, or the other? Why not another dimension, another field, another universe? Science has never advanced in this manner in the past. Science does not advance by guessing. It advances by new data or by a deep investigation of the content and the apparent contradictions of previous empirically successful theories. Quite remarkably, the best piece of physics done by the three people you mention is Hawking’s black-hole radiation, which is exactly this. But most of current theoretical physics is not of this sort. Why? Largely because of the philosophical superficiality of the current bunch of scientists. (via Quantum Gravity Expert Says “Philosophical Superficiality” Has Harmed Physics | Cross-Check, Scientific American Blog Network)

Horgan: What’s your opinion of the recent philosophy-bashing by Stephen Hawking, Lawrence Krauss and Neil deGrasse Tyson? Rovelli: Seriously: I think they are stupid in this. I have admiration for them in other things, but here they have gone really wrong. Look: Einstein, Heisenberg, Newton, Bohr…. and many many others of the greatest scientists of all times, much greater than the names you mention, of course, read philosophy, learned from philosophy, and could have never done the great science they did without the input they got from philosophy, as they claimed repeatedly. You see: the scientists that talk philosophy down are simply superficial: they have a philosophy (usually some ill-digested mixture of Popper and Kuhn) and think that this is the “true” philosophy, and do not realize that this has limitations. Here is an example: theoretical physics has not done great in the last decades. Why? Well, one of the reasons, I think, is that it got trapped in a wrong philosophy: the idea that you can make progress by guessing new theory and disregarding the qualitative content of previous theories. This is the physics of the “why not?” Why not studying this theory, or the other? Why not another dimension, another field, another universe? Science has never advanced in this manner in the past. Science does not advance by guessing. It advances by new data or by a deep investigation of the content and the apparent contradictions of previous empirically successful theories. Quite remarkably, the best piece of physics done by the three people you mention is Hawking’s black-hole radiation, which is exactly this. But most of current theoretical physics is not of this sort. Why? Largely because of the philosophical superficiality of the current bunch of scientists. (via Quantum Gravity Expert Says “Philosophical Superficiality” Has Harmed Physics | Cross-Check, Scientific American Blog Network)

ntil Anaximander, all the civilizations of the planet— everybody around the world—thought the structure of the world was the sky over our heads and the earth under our feet. There’s an up and a down, heavy things fall from the up to the down, and that’s reality. Reality is oriented up and down; Heaven’s up and Earth is down. Then comes Anaximander and says, “No, it’s something else. The Earth is a finite body that floats in space, without falling, and the sky is not just over our head, it’s all around.” (via New Republic)
How did he get this? Well, obviously, he looked at the sky. You see things going around—the stars, the heavens, the moon, the planets, everything moves around and keeps turning around us. It’s sort of reasonable to think that below us is nothing, so it seems simple to come to this conclusion. Except that nobody else came to this conclusion. In centuries and centuries of ancient civilizations, nobody got there. The Chinese didn’t get there until the 17th century, when Matteo Ricci and the Jesuits went to China and told them. In spite of centuries of the Imperial Astronomical Institute, which was studying the sky. The Indians learned this only when the Greeks arrived to tell them. In Africa, in America, in Australia—nobody else arrived at this simple realization that the sky is not just over our head, it’s also under our feet. Why?
Because obviously it’s easy to suggest that the Earth floats in nothing, but then you have to answer the question, Why doesn’t it fall? The genius of Anaximander was to answer this question. We know his answer—from Aristotle, from other people. He doesn’t answer this question, in fact: He questions this question. He asks, “Why should it fall?” Things fall toward the Earth. Why should the Earth itself fall? In other words, he realizes that the obvious generalization—from every heavy object falling to the Earth itself falling—might be wrong. He proposes an alternative, which is that objects fall toward the Earth, which means that the direction of falling changes around the Earth.
it’s not by changing theories that we go ahead but by changing the way we think about the world.
[Einstein] has so much trust in the theory itself, in the qualitative content of the theory—that qualitative content that Kuhn says changes all the time, that we learned not to take too seriously—and he has so much in that that he’s ready to do what? To force coherence between the two theories [Newton’s and Maxwell’s] by challenging something completely different, which is something that’s in our head, which is how we think about time.
science is about constructing visions of the world, about rearranging our conceptual structure, about creating new concepts which were not there before, and even more, about changing, challenging, the a priori that we have. It has nothing to do with the assembling of data and the ways of organizing the assembly of data. It has everything to do with the way we think, and with our mental vision of the world. Science is a process in which we keep exploring ways of thinking and keep changing our image of the world, our vision of the world, to find new visions that work a little bit better.
Science is not about certainty. Science is about finding the most reliable way of thinking at the present level of knowledge. Science is extremely reliable; it’s not certain. In fact, not only is it not certain, but it’s the lack of certainty that grounds it. Scientific ideas are credible not because they are sure but because they’re the ones that have survived all the possible past critiques, and they’re the most credible because they were put on the table for everybody’s criticism.

ntil Anaximander, all the civilizations of the planet— everybody around the world—thought the structure of the world was the sky over our heads and the earth under our feet. There’s an up and a down, heavy things fall from the up to the down, and that’s reality. Reality is oriented up and down; Heaven’s up and Earth is down. Then comes Anaximander and says, “No, it’s something else. The Earth is a finite body that floats in space, without falling, and the sky is not just over our head, it’s all around.” (via New Republic)

  • How did he get this? Well, obviously, he looked at the sky. You see things going aroundthe stars, the heavens, the moon, the planets, everything moves around and keeps turning around us. It’s sort of reasonable to think that below us is nothing, so it seems simple to come to this conclusion. Except that nobody else came to this conclusion. In centuries and centuries of ancient civilizations, nobody got there. The Chinese didn’t get there until the 17th century, when Matteo Ricci and the Jesuits went to China and told them. In spite of centuries of the Imperial Astronomical Institute, which was studying the sky. The Indians learned this only when the Greeks arrived to tell them. In Africa, in America, in Australianobody else arrived at this simple realization that the sky is not just over our head, it’s also under our feet. Why?
  • Because obviously it’s easy to suggest that the Earth floats in nothing, but then you have to answer the question, Why doesn’t it fall? The genius of Anaximander was to answer this question. We know his answerfrom Aristotle, from other people. He doesn’t answer this question, in fact: He questions this question. He asks, “Why should it fall?” Things fall toward the Earth. Why should the Earth itself fall? In other words, he realizes that the obvious generalizationfrom every heavy object falling to the Earth itself fallingmight be wrong. He proposes an alternative, which is that objects fall toward the Earth, which means that the direction of falling changes around the Earth.
  • it’s not by changing theories that we go ahead but by changing the way we think about the world.
  • [Einstein] has so much trust in the theory itself, in the qualitative content of the theorythat qualitative content that Kuhn says changes all the time, that we learned not to take too seriouslyand he has so much in that that he’s ready to do what? To force coherence between the two theories [Newton’s and Maxwell’s] by challenging something completely different, which is something that’s in our head, which is how we think about time.
  • science is about constructing visions of the world, about rearranging our conceptual structure, about creating new concepts which were not there before, and even more, about changing, challenging, the a priori that we have. It has nothing to do with the assembling of data and the ways of organizing the assembly of data. It has everything to do with the way we think, and with our mental vision of the world. Science is a process in which we keep exploring ways of thinking and keep changing our image of the world, our vision of the world, to find new visions that work a little bit better.
  • Science is not about certainty. Science is about finding the most reliable way of thinking at the present level of knowledge. Science is extremely reliable; it’s not certain. In fact, not only is it not certain, but it’s the lack of certainty that grounds it. Scientific ideas are credible not because they are sure but because they’re the ones that have survived all the possible past critiques, and they’re the most credible because they were put on the table for everybody’s criticism.